Presynaptic calcium dynamics at the frog retinotectal synapse.
نویسندگان
چکیده
1. We characterized the kinetics of presynaptic Ca2+ ion concentration in optic nerve fibers and terminals of the optic tectum in Rana pipiens with the use of microfluorimetry. Isolated frog brains were incubated with the membrane-permeant tetraacetoxymethyl ester (AM) of the Ca2+ indicator fura-2. An optic nerve shock caused a transient decrease in the 380-nm excited fluorescence in the optic tectum with a rise time of <15 ms and a recovery to prestimulus levels on a time scale of seconds. 2. In normal saline, the amplitude of the fluorescence transients was dependent on stimulus intensity and at all levels it was directly correlated with the amplitude of postsynaptic field potentials produced by activation of unmyelinated optic nerve fibers. In the presence of the non-N-methyl-D-aspartate glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione, the amplitude and time course of fluorescence transients remained essentially unchanged while postsynaptic field potential amplitude was greatly reduced. Replacing extracellular Ca2+ with Ba2+ blocked unfacilitated postsynaptic field potentials while fluorescence transients remained significant. In reduced-Ca2+ salines (<1 mM), the amplitude of fluorescence transients increased approximately linearly with extracellular [Ca2+], whereas the amplitude the corresponding field potential was nonlinearly related to the fluorescent transient amplitude (approximately 2.5 power). In thin sections of labeled tecta, fluorescence labeling was localized to 1-micron puncta in the termination zone of optic nerve fibers in the superficial layers. Taken together, these results provide strong evidence that the fluorescence transients correspond to an increase in Ca2+ in presynaptic terminals of unmyelinated optic nerve fibers. 3. During trains of optic nerve stimulation, the amplitude of fluorescence transients to succeeding action potentials became smaller. The decrement of the amplitudes was not observed in mag-fura-5-labeled tecta, when the intracellular Ca2+ buffering capacity of fura-2-labeled terminals was increased by incubation with bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)-AM or ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-AM, or in low-Ca2+ saline. We conclude that the Ca2+ influx per action potential is constant during the train and that the reduced response was produced by saturation of the fura-2. We provide a mathematical analysis of this saturation effect and use it to estimate the Ca2+ change per action potential. 4. Both BAPTA-AM and EGTA-AM reduced the overall amplitude of fura-2-measured Ca2+ transients and reduced the saturation effect in action potential trains. However, there was a qualitative difference in their effects on the shape of the transient. Incubation with the fast buffer BAPTA prolonged the decay to baseline. In contrast, the slow buffer EGTA (or EDTA) produced an initial decay faster than the control condition while also producing the slower subsequent phase observed with BAPTA. We demonstrate that these results are consistent with numerical simulations of Ca2+ dynamics in a single-compartment model where the fast initial decay is produced by the forward rate of Ca2+ binding to EGTA. 5. Ca2+ influx into tectal presynaptic structures, and also into unmyelinated axons in the isolated optic nerve, was diminished (60-70%) in the presence of the voltage-activated Ca2+ channel blocker omega-conotoxin GVIA, but was only weakly affected (approximately 10%) by omega-agatoxin IVA. 6. After 10- to 50-Hz stimulus trains, synaptic enhancement of unmyelinated fibers decayed with a characteristic time similar to fura-2 fluorescence decays. Incubation with EDTA-AM or EGTA-AM produced little effect on evoked release but reduced both the amplitude of the fura-2-measured Ca2+ transient and the amplitude of short-term synaptic enhancement.
منابع مشابه
New insights into short-term synaptic facilitation at the frog neuromuscular
25 26 Short-term synaptic facilitation occurs during high frequency stimulation, is known to be dependent on 27 presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We 28 have used the frog neuromuscular junction as a model synapse for both experimental and computer 29 simulation studies aimed at testing various mechanistic hypotheses proposed to...
متن کاملNew insights into short-term synaptic facilitation at the frog neuromuscular junction.
Short-term synaptic facilitation occurs during high-frequency stimulation, is known to be dependent on presynaptic calcium ions, and persists for tens of milliseconds after a presynaptic action potential. We have used the frog neuromuscular junction as a model synapse for both experimental and computer simulation studies aimed at testing various mechanistic hypotheses proposed to underlie short...
متن کاملAdenosine A1 and class II metabotropic glutamate receptors mediate shared presynaptic inhibition of retinotectal transmission.
Presynaptic inhibition is one of the major control mechanisms in the CNS. Previously we reported that adenosine A1 receptors mediate presynaptic inhibition at the retinotectal synapse of goldfish. Here we extend these findings to metabotropic glutamate receptors (mGluRs) and report that presynaptic inhibition produced by both A1 adenosine receptors and group II mGluRs is due to G(i) protein cou...
متن کاملPhenobarbital Increases Spontaneous Transmitter Release at the Frog Neuromuscular Junction
Phenobarbital (1-2 × 10(-4)M) markedly increases the frequency of miniature end-plate potentials at the neuromuscular synapse of the frog. This effect was seen in calcium free media containing EGTA. The drug probably acts presynaptically at an intracellular locus to increase the presynaptic free calcium concentration.
متن کاملTransmitter release is evoked with low probability predominately by calcium flux 2 through single channel openings at the frog neuromuscular junction
39 The quantitative relationship between presynaptic calcium influx and transmitter 40 release critically depends on the spatial coupling of presynaptic calcium channels to 41 synaptic vesicles. When there is a close association between calcium channels and 42 synaptic vesicles, the flux through a single open calcium channel may be sufficient to 43 trigger transmitter release. With increasing s...
متن کاملCell-autonomous TrkB signaling in presynaptic retinal ganglion cells mediates axon arbor growth and synapse maturation during the establishment of retinotectal synaptic connectivity.
BDNF contributes to the activity-dependent establishment and refinement of visual connectivity. In Xenopus, BDNF applications in the optic tectum influence retinal ganglion cell (RGC) axon branching and promote synapse formation and stabilization. The expression patterns of BDNF and TrkB suggest that BDNF specifically regulates the maturation of RGC axons at the target. It is possible, however,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 76 1 شماره
صفحات -
تاریخ انتشار 1996